Koľko litrov a kociek je v sude?

Obsah
  1. Čo je potrebné na výpočet?
  2. Ako vypočítať objem rôznych sudov?
  3. Objem v litroch

Objem suda je na prvý pohľad celkom jednoduchá hodnota. Vo valcovom sude s konštantným priemerom je ľahké vypočítať. Stará verzia, ktorá má zakrivené steny, si vyžaduje špeciálny prístup k výpočtu objemu.

Čo je potrebné na výpočet?

Okrem kalkulačky príde vhod zvinovací meter. Jeho dĺžka nesmie presiahnuť 3 m.

Ako vypočítať objem rôznych sudov?

Na začiatok sa priemer meria vo valcovom sude. Dá sa ľahko zistiť, že si všimnete najvyššiu hodnotu.

V prípade hrubostennej hlavne treba brať do úvahy vnútorný priemer, nie vonkajší priemer.

Ak bol použitý tenší materiál, napríklad nehrdzavejúca oceľ do 1 mm, potom možno hrúbku stien nádoby zanedbať.

Hodnota priemeru nameraná pre konkrétnu nádobu je polovičná. Toto je polomer produktu. Vzorec obsahuje dva výpočty.

  1. Druhá mocnina hodnoty polomeru sa vynásobí číslom 3,1415926535 ..., približnejšie - 3,1416. Toto číslo je spojené s obvodom - je to nekonečný desatinný zlomok (iracionálna hodnota). Výsledná hodnota je plocha kruhu alebo základne (spodnej časti) v jej skutočnej veľkosti.
  2. Zmeriame výšku hlavne - a vynásobíme ju výslednou plochou dna. Toto je objem nádoby. Namerané hodnoty sa prepočítavajú na metre, inak bude objem v metroch kubických nereálne veľký.

Pre starý sud s premenlivým priemerom vykonáme trochu iný výpočet.

  1. Priemer meriame v hornej časti - najmenšia efektívna hodnota. Nad a pod ním sa ukáže, že je to isté - obe dna nádoby sú tiež rovnaké. Rozdeľte priemer na dve, výslednú hodnotu odmocnite a vynásobte číslom 3,1416.
  2. Pomocou krajčírskeho metra opásame hlaveň okolo a v strede. Výsledná hodnota je obvod. Vydelením číslom 3,1416 dostaneme priemer, jeho hodnotu rozdelíme na polovicu. Toto je maximálny polomer nádoby - jeho väčšia hodnota. Od polomeru odpočítame hrúbku stien (zakrivené dosky tvoriace steny) – dostaneme skutočnú, efektívnu hodnotu polomeru (maximálne). Vynásobením čísla 3,1416 druhou mocninou jeho hodnoty dostaneme plochu časti imaginárnej roviny prechádzajúcej stredom hlavne a ohraničenú vnútorným povrchom jej stien.
  3. Určte aritmetický priemer (v metroch štvorcových) väčších a menších efektívnych hodnôt základne nádrže. To znamená, že ich pridáme – a rozdelíme na dve časti.
  4. Zmeriame (v metroch) a vynásobíme hodnotu výšky priemernou plochou dna nádrže.

Výsledná hodnota je objem nádoby „pot-bellied“.

Pre eliptický sud je schéma počítania iná.

  1. Meriame vzdialenosť medzi protiľahlými bodmi nádoby umiestnenej na elipse (ovál prierezu). Mali by ste získať dve výrazne odlišné hodnoty.
  2. Zistite aritmetický priemer týchto veličín, znova ho rozdeľte na polovicu - to je polomer.
  3. Zmeriame výšku - a jej hodnotu vynásobíme druhou mocninou priemerného polomeru a číslom 3,1416. Výsledná hodnota - v kubických metroch - je objem oválneho kontajnera.

Hoci pojem polomer neplatí pre ovál, je ľahké ho definovať ako priemer. Predpokladá sa, že ovál je dokonalá krivka, pripomínajúca súčasne sploštený a predĺžený kruh.

Obdĺžnikové nádoby, ktorých priestor je vo vnútri rovnobežnosten, sa počítajú podľa objemu rýchlejšie ako ich "okrúhle" náprotivky. Dĺžka, šírka a výška nádrže sa navzájom vynásobia.

Nádrže vo forme hranola (najčastejšie správne) nie sú veľmi bežné, ich vzorec na výpočet je komplikovaný. Na zistenie ich objemu boli zavedené nasledujúce geometrické koncepty:

  • obvod mnohouholníka je základňa, ktorej plocha je potrebná na výpočet objemu nádoby;
  • apotém je dĺžka úsečky spájajúcej stred mnohouholníka so stredom ktorejkoľvek z jeho strán.

Ak chcete nájsť oblasť dna, napríklad pravidelný šesťhranný hranol, vykonajte 4 výpočty.

  1. Zmerajte a vypočítajte obvod dna prizmatického suda.
  2. Určte stred hranola nakreslením čiar ceruzkou spájajúcich protiľahlé strany pravidelného šesťuholníka. Bod ich priesečníka je stred dna. Označte bod v strede oboch strán spodného šesťuholníka a nakreslite čiaru-apotém. Zmerajte jeho dĺžku.
  3. Rozdeľte spodný obvod na polovicu - a vynásobte ho hodnotou apotému. Nezabudnite previesť namerané hodnoty na metre. Výsledkom je plocha – v metroch štvorcových – dna suda.
  4. Vynásobte túto hodnotu výškou.

Vypočíta sa objem nádoby so šesťhranným hranolom. Pre sudy so základňou v tvare nepravidelného mnohouholníka budete musieť zmerať všetky strany dna - a preniesť ich na výkres, vpísať tento mnohouholník do kruhu. Vzorec na výpočet objemu takéhoto geometrického útvaru môže byť trochu komplikovaný. Priemysel však takéto nádrže takmer nevyrába a výpočet „nesprávnej“ kapacity je skôr teoretický ako praktický.

Objem v litroch

Výpočet výtlaku znamená brať do úvahy konštantnú hodnotu: 1 liter vody - 0,001 m3. Stred vody zaberie 0,1 metra kubického. Tento vzorec platí pre všetky kvapaliny: jeden liter je decimeter kubický. Je ľahké vypočítať kubický objem, napríklad nádrže s objemom 4 ton vody: je to rovnaký počet „kociek“. Ale napríklad pri rope má „kocka“ podstatne menej ako jednu tonu. Hustota toho istého oleja je o toľko menšia ako hustota vody, nakoľko hmotnosť určitého objemu ropných produktov je nižšia ako hmotnosť rovnakého množstva vody. Ale 1 m3 je konštantná hodnota.

Napríklad nádoba na polievanie záhrady (vyžaduje napojenie zavlažovacích potrubí alebo odbočiek na záhradné hadice) 200 litrov má objem 0,2 m3. Na výpočet tejto hodnoty sa používa rovnaký vzorec na prepočet litrov na kubické metre.

Na zásobovanie vodou jednej tony (1 m3) bude potrebných 5 takýchto nádob.

bez komentára

Komentár bol úspešne odoslaný.

Kuchyňa

Spálňa

Nábytok